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Abstract

We consider integrable deformations of the Laplace–Beltrami operator on a constant curvature surface,
obtained through the action of first-order Darboux transformations. Darboux transformations are related to
the symmetries of the underlying geometric space and lead to separable potentials which are related to the
KdV equation. Eigenfunctions of the corresponding operators are related to highest weight representations
of the symmetry algebra of the underlying space.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we consider the Laplace–Beltrami operator of a space of constant curvature and
build integrable potential functions through Darboux transformations related to the symmetries
of the underlying geometric space. We start by recalling some basic geometric facts.

For an n-dimensional (pseudo-)Riemannian space, with local coordinatesx1, . . . , xn and metric
gij , the Laplace–Beltrami operator is defined by

Lbf =
n∑

i,j=1

1√
g

∂

∂xj

(√
ggij

∂f

∂xi

)
, (1)

where g is the determinant of the matrix gij . When the space is either flat or constant curvature, it
possesses the maximal group of isometries, which is of dimension 1

2n(n+ 1). The infinitesimal
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generators (Killing vectors) are just first-order differential operators which commute with the
Laplace–Beltrami operator (1). This is always the case, whenever the space has isometries, but in
the case of flat and constant curvature spaces, Lb is actually the second-order Casimir function
of the symmetry algebra (see [6]). Since we are not going to be involved in tensorial calculations,
there is no need to use upper and lower index notation. All coordinates will carry lower indices
in what follows.

In this paper, we restrict attention to the case n = 2, but the approach is easily applied to higher
dimensions. Constant curvature metrics of a given scalar curvature are related through coordinate
transformations. In Section 2, we introduce a specific form of metric and its symmetry algebra
(Killing vectors). We then give the form of various separation coordinate systems, which will be
used later in the paper.

We use first-order Darboux transformations to add a potential functions to this differential
operator in such a way that it still possesses a number of first integrals. We are therefore led to
consider the operator defined by

Lf = Lbf + uf, (2)

where u is a function of the coordinates. Such Darboux transformations are related to the symme-
tries of the Laplace–Beltrami operator and lead to the separability of the operator L. The resulting
Darboux transformations are closely related to those of the one-dimensional Schrödinger operator
and the well known KdV Bäcklund chains. These give rise to very specific potential functions
for which eigenfunctions can be explicitly calculated. It should be recalled that in the general
separable case, the construction of eigenfunctions is reduced to the solution of a number of first-
or second-order ordinary differential equations, which need not be explicitly solvable. This is
analogous to the classical case of “integration up to quadrature”. However, in the quantum case
the problem will be reduced to one or more one-dimensional Schrödinger equations, which still
need to be solved.

Eigenfunctions of the Laplace–Beltrami operator are constructed as highest weight represen-
tations of the symmetry algebra and these are used to build eigenfunctions of the Darboux related
operators. These operators are shown to possess a commuting operator, which then acts invariantly
on the eigenspaces of L.

For special potentials there exist more than n (independent) commuting operators (only n of
which are in involution). Such systems are called super-integrable. We consider these in Section
6.

2. The metric and its symmetries

The coefficients of leading order terms in the Laplace–Beltrami operator are the coefficients
of the inverse metric gij . We consider the constant curvature metric with inverse:

gij =
(
x2 xy

xy y2 − y

)
. (3)

Remark 2.1. The choice of coordinates here is motivated by the relationship to Krall–Sheffer
operators [9], but otherwise quite arbitrary. We later introduce a variety of separation coordinates,
which will actually be used in most calculations.
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A convenient basis of Killing vectors is

H = 4x∂x, E = 2
√
xy∂y, F = 4

√
xy∂x + 2(y − 1)

√
y

x
∂y, (4)

satisfying the standard commutation relations of sl(2,C):

[H,E] = 2E, [H,F] = −2F, [E,F] = H. (5)

The Laplace–Beltrami operator for the metric (3) is proportional to the quadratic Casimir operator:

Lb = 1

16
(H2 + 2EF+ 2FE) = x2∂2

x + 2xy∂x∂y + (y2 − y)∂2
y +

3

2
x∂x + 1

2
(3y − 1)∂y.

(6)

Since the Killing vectors commute with Lb, they act on its eigenfunctions without changing
eigenvalue, corresponding to degeneracy. We can therefore use the representation theory of sl(2,C)
to build eigenfunctions ofLb. In general, the symmetry algebra ofLb plays no role when a potential
is added. An exceptional case is when the potential is an invariant function of one of the geometric
symmetries of Lb, but this is rather trivial. Later we see that symmetries play a role in Darboux
transformations, which enable us to build special potentials whose eigenfunctions can be built out
of those of the “bare operator” Lb. However, we first consider the construction of second-order
operators and separable coordinates.

Suppose the operator

I1 = K11∂2
x + 2K12∂x∂y +K22∂2

y + k1∂x + k2∂y + v(x, y)

commutes with the operator (2). Then Kij are components of a rank two Killing tensor (see [3]).
For flat and constant curvature metrics these are built out of Killing vectors by symmetric tensor
products [2,8]. The function v(x, y) then satisfies a pair of first-order partial differential equations,
whose integrability conditions give rise to a second-order partial differential equation for u(x, y).
Writing this operator in characteristic coordinates leads to separation of variables. We give three
examples below in order to collect formulae for later sections. There is a considerable amount of
freedom in choosing separation coordinates. We choose coordinates which render the metric in
diagonal, conformally flat form.

Remark 2.2. In two dimensions all metrics are conformally flat. However, in all dimensions,
spaces of constant curvature are automatically conformally flat. The construction used here is
specifically tailored to this case and can therefore be used in higher dimensional examples.

If we are just interested in separable systems, we could take any quadratic expression in Killing
vectors. However, we find that as a consequence of building a potential function by the application
of a sequence of first-order Darboux transformations, the resulting operator L commutes with a
second-order operator of specific form

I1 = K2 + v(x, y),

where K is a Killing vector. For this reason, the examples below are of this form.

Example 2.1 (The Killing tensor H2). Suppose

I1 = H2 + v(x, y) = x2∂2
x + x∂x + v(x, y).

If I1 had been a general second-order differential operator, the expansion of [L, I1] = 0 would
have contained terms of all orders from three to zero. Since H2 is a Killing tensor, the third- and
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second-order terms automatically vanish. The first-order terms give us

vx = (1− y)ux, vy = xux ⇒ ∂x(xux + (y − 1)uy + u) = 0, (7)

with general solution

u(x, y) =
u1

(
y−1
x

)
y − 1

+ u2(y), v(x, y) = −u1

(
y − 1

x

)
.

We see the characteristic property of a separable system in two dimensions, with the potential
depending upon two arbitrary functions of a single variable. These (or any function of them) are
the separation variables for the operator (2) with this potential, which is itself a consequence of
our choice of second-order Killing tensor. We choose functions

q1 = Q1

(
y − 1

x

)
, q2 = Q2(y)

such that

LbQi = 0⇒
{

x
y−1Q

′′
1 +Q′1 = 0,

y(y − 1)Q′′2 + 1
2 (3y − 1)Q′2 = 0.

Remark 2.3. This condition generally holds in two dimensions for metrics in “Riemannian” form
(explicitly conformally flat). In higher dimensions a slightly more complicated condition holds.

This gives the coordinates

q1 = 1

4
ln

(
x

y − 1

)
, q2 = 1

4
ln

(√
y + 1√
y − 1

)
,

so x = e4q1

sinh2(2q2)
, y = coth2(2q2),

after which (relabelling ui)

L = − 1

16
sinh2(2q2)(∂2

1 − ∂2
2 + u1(q1)− u2(q2)), I1 = ∂2

1 + u1(q1) (8)

and

H = ∂1, E = −1

2
e2q1 (cosh(2q2)∂1 + sinh(2q2)∂2),

F = 1

2
e−2q1 (cosh(2q2)∂1 − sinh(2q2)∂2).

The fact that q1 “straightens” H is a consequence of our choice of Killing tensor.

Example 2.2 (The Killing tensor E2). Suppose

I1 = E2 + v(x, y) = 4xy∂2
y + 2x∂y + v(x, y).

Once again, the expansion of [L, I1] = 0 contains only first- and zeroth-order terms giving

vx = 4yuy, vy = −4xuy ⇒ ∂y(xux + yuy + u) = 0, (9)
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with general solution

u(x, y) = u1(x)+ u2( y
x

)

x
, v(x, y) = −4u2

(y
x

)
.

Again the potential depends upon two arbitrary functions of a single variable. This time we choose
the coordinates

q1 = 1√
x
, q2 =

√
y

x
, so x = 1

q2
1

, y = q2
2

q2
1

,

after which (relabelling ui)

L = 1

4
q2

1(∂2
1 − ∂2

2 + u1(q1)− u2(q2)), I1 = ∂2
2 + u2(q2) (10)

and

H = −2(q1∂1 + q2∂2), E = ∂2, F = −2q1q2∂1 − (q2
1 + q2

2)∂2.

This time E is “straightened”.

Example 2.3 (The Killing tensor F2). Suppose

I1 = F2 + v(x, y) = 16xy∂2
x + 16y(y − 1)∂x∂y

+ 4
y(y − 1)2

x
∂2
y + 4(3y − 1)∂x + 2

(y − 1)2

x
∂y + v(x, y).

Once again, the expansion of [L, I1] = 0 contains only first- and zeroth-order terms giving

vx = 4y(1− y)

x2 (2xux + (y − 1)uy), vy = 4(1+ y)

x
(2xux + (y − 1)uy),

with integrability conditions

x2(1+ y)uxx + 1

2
x(y − 1)(3y + 1)uxy + 1

2
y(y − 1)2uyy

+ x(2y − 1)ux + (y − 1)2uy = 0. (11)

This is a hyperbolic equations with characteristic coordinates

q1 =
√
x

y − 1
, q2 =

√
xy

y − 1
, so x = (q2

2 − q2
1)2

q2
1

, y = q2
2

q2
1

.

These were once again chosen to render Lb in “Riemannian” form. In these coordinates, (11)
simplifies to

q1uq1q2 − 2uq2 = 0 ⇒ u(q1, q2) = 1

4
q2

1(u1(q1)− u2(q2)).

The operators L and I1 now take the form:

L = 1

4
q2

1(∂2
1 − ∂2

2 + u1(q1)− u2(q2)), I1 = ∂2
2 + u2(q2) (12)

with

H = 2(q1∂1 + q2∂2), F = ∂2, E = −2q1q2∂1 − (q2
1 + q2

2)∂2.

This time F is “straightened”.
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Involution. Since the changes of coordinates in Examples 2.2 and 2.3 lead to exactly the same
form of operator (same metric), we have the following transformations:

q̄1 = q1

q2
2 − q2

1

, q̄2 = q2

q2
2 − q2

1

,

with inverse q1 = q̄1

q̄2
2 − q̄2

1

, q2 = q̄2

q̄2
2 − q̄2

1

, (13)

where we have used (q1, q2) and (q̄1, q̄2) to represent the two different cases (related to a single
point (x, y)). Since the transformation and its inverse have the same form, this is an involution,
which, in fact, gives a concrete realisation of the Lie algebra automorphism:

E↔ F, H→−H.

On the other hand, thinking of the separated metric as the “fixed object”, we have an involution
which realises the same automorphism in the (x, y) coordinates:

x̄ = (y − 1)2

x
, ȳ = y. (14)

3. Eigenfunctions of the Laplace–Beltrami operator

We use the highest weight representations of the symmetry algebra sl(2,C) to construct eigen-
functions of Lb. Since H and Lb commute, they share eigenfunctions and for H these are built by
the highest weight construction. Furthermore, starting with any eigenfunction of Lb, we may use
the symmetry algebra to construct further eigenfunctions (with the same eigenvalue). Since this
eigenspace is invariant under the action of sl(2,C) (by construction), it can be decomposed into
irreducible components, which are just weight spaces. Therefore, all eigenfunctions of Lb can be
written as linear combinations of those we construct below.

A highest weight vector ψm1 , of weight 2m, satisfies

Eψm1 = 0, Hψm1 = 2mψm1 ,

which constitute a pair of partial differential equations for the eigenfunction. These are compatible
on the zeros of the differential operator E, since

HEψm1 − EHψm1 = 2Eψm1 = 0.

The specific form of ψm1 depends upon m and upon the choice of representation for sl(2,C).
However, the general structure of the representation is independent of this specific form, being a
consequence only of the commutation relations (5) (see [7]).

Defining ψmn = Fn−1ψm1 , the commutation relations imply:

Hψmn = 2(m+ 1− n)ψmn , Eψmn = (n− 1)(2m+ 2− n)ψmn−1. (15)

Our definition of Laplace–Beltrami operator Lb as Casimir operator (6) implies that

Lbψ
m
n =

1

4
m(m+ 1)ψmn , for all m, n.

We can also construct a three-point recursion relation between these eigenfunctions, but this
is explicitly dependent upon the representation. Let

H = h1∂z1 + h2∂z2 , E = e1∂z1 + e2∂z2 , F = f1∂z1 + f2∂z2 ,
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where hi, etc are functions of the coordinates zi. We have (with µn and an defined by (15))

Hψmn = µnψmn ,
Eψmn = anψmn−1

}
⇒
(
∂z1ψ

m
n

∂z2ψ
m
n

)
= 1

h1e2 − e1h2

(
e2 −h2

−e1 h1

)(
µnψ

m
n

anψ
m
n−1

)
. (16)

The relation ψmn+1 = Fψmn then implies that

ψmn+1 =
f1e2 − e1f2

h1e2 − e1h2
µnψ

m
n +

h1f2 − f1h2

h1e2 − e1h2
anψ

m
n−1. (17)

When this is singular the representation reduces to one dimension.
For the three examples presented in Section 2, we give the explicit formulae.

The Killing tensor H2. Here

ψm1 =
(

e2q1

sinh 2q2

)m
,

ψmn+1 = 2(m+ 1− n)e−2q1 cosh 2q2ψ
m
n + (n− 1)(2m+ 2− n)e−4q1ψmn−1. (18)

The Killing tensor E2. Here

ψm1 = q−m1 ,

ψmn+1 = 2(m+ 1− n)q2ψ
m
n + (n− 1)(2m+ 2− n)(q2

2 − q2
1)ψmn−1. (19)

The Killing tensor F2. Here

ψm1 =
(
q2

1 − q2
2

q1

)m
,

ψmn+1 = 2(m+ 1− n)
q2

q2
2 − q2

1

ψmn +
(n− 1)(2m+ 2− n)

q2
2 − q2

1

ψmn−1. (20)

The cases of E2 and F2 are related through the involution (13). For instance,

ψm1 = q−m1 ↔ ψm1 =
(
q2

1 − q2
2

q1

)m

under the involution.
When m is an integer, these representations are of finite dimension 2m+ 1 and irreducible,

but infinite dimensional otherwise.

4. Darboux transformations

Darboux transformations are analogous to similarity transformations in matrix theory. We
require an intertwining operator between two operators of type (2), with the sameLb but different
potentials:

Li = Lb + ui, i = 1, 2, L2D = DL1 + δD, (21)
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where D is a differential operator (if D is just a function, this is a “gauge transformation”). When
δ = 0, (21) is isospectral, but otherwise

L1ψ = λψ⇒ L2(Dψ) = (λ+ δ)(Dψ). (22)

The simplest case is when D is a first-order differential operator:

D = a(x, y)∂x + b(x, y)∂y + w(x, y)

with which the leading order term of (21) is the second order operator

[Lb, a(x, y)∂x + b(x, y)∂y],

which should therefore vanish. This is the condition that a(x, y)∂x + b(x, y)∂y is a Killing vector
field of the metric. We therefore choose the differential part of D to be any linear combination of
the basis elements H,E,F.

We consider operators Ln = Lb + un(q1, q2), where, the suffix n refers to the sequence of
operators created by a succession of Darboux transformations:

Ln+1Dn = DnLn + δnDn, Dn = K + wn, (23)

where K is the chosen Killing vector. This gives rise to a Bäcklund chain which is closely related
to that of the KdV equation.

The first integral I1 (presented for particular examples in Section 2) is then just the Darboux
transformations of the corresponding quadratic Killing tensor K2:

(K2 + vn+1)Dn = Dn(K2 + vn). (24)

The function vn is a separated part of the potential un (see examples below). The equations on
wn and un, implied by this, are the same as those implied by the Darboux transformation (23).

We can use any coordinate system for our calculations, but adapting coordinates to the par-
ticular Killing field is convenient. This means choosing one coordinate qi, such that a(x, y)∂x +
b(x, y)∂y = ∂i, after which we find thatw(x, y) = w̄(qi). In the examples below, we use the coor-
dinates introduced in Section 2, but sometimes transform back to the original x− y coordinates
of the metric (3).

4.1. The operator (8) with Killing tensor H2

We consider operators

Ln = − 1

16
sinh2(2q2)(∂2

1 − ∂2
2 + un(q1, q2)),

where for this calculation, we have not yet separated the potential. As above, the suffix n refers
to the sequence of operators created by a succession of Darboux transformations:

Ln+1Dn = DnLn + δnDn, Dn = ∂1 + wn(q1), (25)

leading to

un+1 = un − 2w′n(q1)− 16δn
sinh2(2q2)

, un = w′n(q1)− w2
n(q1)− σn(q2).

These give two formulae for un+1, which can be equated, leading to the following Bäcklund chain:

w′n+1 + w′n + w2
n − w2

n+1 − σn+1 + σn + 16δn
sinh2(2q2)

= 0,
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which separates into the pair of chains

w′n+1 + w′n + w2
n − w2

n+1 = γn, σn+1 − σn − 16δn
sinh2(2q2)

= γn. (26)

The functionswn(q1) satisfy the standard Bäcklund chain of the one-dimensional Schrödinger
operator of KdV theory [10,11], so the solutions are well known. For a given solution of wn, un,
the transformation of Example 2.1 gives a potential in terms of x, y.

“Soliton” solutions. With wn = −(n+ 1) tanh q1, we get

γn = −2n− 3, un = n(n+ 1) sech2q1 − (n+ 1)2 − σn(q2). (27)

With σ0 = −1 and δn = − 1
8 (n+ 1) we have

σn = − n(n+ 1)

sinh2 2q2
− (n+ 1)2 and un = n(n+ 1) sech2 q1 + n(n+ 1)

sinh2 2q2
.

Rational solutions. With wn = −n+1
q1

, we get

γn = 0, un = −n(n+ 1)

q2
1

− σn(q2). (28)

With σ0 = 0 and δn = − 1
8 (n+ 1) we have

σn = − n(n+ 1)

sinh2 2q2
and un = n(n+ 1)

sinh2 2q2
− n(n+ 1)

q2
1

.

The first integral I1. Under the Darboux transformation the first integral satisfies the “usual”
KdV Darboux transformation

(∂2
1 + un+1,1(q1))(∂1 + wn(q1)) = (∂1 + wn(q1))(∂2

1 + un,1(q1)),

where ∂1 = H, with un,1(q1) denoting the separated q1-dependent part of the potential un(q1, q2).

4.2. The operators (10) and (12) with Killing tensors E2 and F2

We can treat Examples 2.2 and 2.3 together, since in their respective separation variables they
lead to the same operator

Ln = 1

4
q2

1(∂2
1 − ∂2

2 − un(q1, q2)),

where again, we have not yet separated the potential. These are related through a succession of
Darboux transformations:

Ln+1Dn = DnLn + δnDn, Dn = ∂2 + wn(q2), (29)

leading to

un+1 = un − 2w′n(q2)− 4δn
q2

1

, un = w′n(q2)− w2
n(q2)− σn(q1).

As before, we obtain the following Bäcklund chain:

w′n+1 + w′n + w2
n − w2

n+1 − σn+1 + σn + 4δn
q2

1

= 0,
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which separates into the pair of chains

w′n+1 + w′n + w2
n − w2

n+1 = γn, σn+1 − σn − 4δn
q2

1

= γn. (30)

The functions wn(q2) satisfy the same Bäcklund chain, with the only difference being in the
relation satisfied by σn(q1). For a given solution of wn, un, the respective transformations of
Examples 2.2 and 2.3 give (generally) two different potentials in terms of x, y.

“Soliton” solutions. With wn = −(n+ 1) tanh q2, we get

γn = −2n− 3, un = n(n+ 1) sech2 q2 − (n+ 1)2 − σn(q1). (31)

With σ0 = −1 and δn = − 1
2 (n+ 1) we have

σn = −n(n+ 1)

q2
1

− (n+ 1)2 and un = n(n+ 1) sech2 q2 + n(n+ 1)

q2
1

.

Rational solutions. With wn = −n+1
q2

, we get

γn = 0, un = −n(n+ 1)

q2
2

− σn(q1). (32)

With σ0 = 0 and δn = − 1
2 (n+ 1) we have

σn = −n(n+ 1)

q2
1

and un = n(n+ 1)

q2
1

− n(n+ 1)

q2
2

.

Adler–Moser rational solutions. With wn = −∂q2 logϕn(q2), we get un = −ϕ
′′
n

ϕn
− σn(q1).

The further substitution

ϕn = Pn(q2)

Pn−1(q2)
⇒ Pn−1P

′
n+1 − P ′n−1Pn+1 = (2n+ 3)P2

n .

It can be shown [1] that the functionsPn, recursively defined by this formula (withP−1 = 1, P0 =
q2) are polynomials (just the “τ-functions” for the rational solutions of the KdV equation). The
degree of Pn is 1

2 (n+ 1)(n+ 2). Some of the lower members of this list are given by

P0 = q2, P1 = q3
2 + t1, P2 = q6

2 + 5t1q
3
2 − 5t21,

w0 = − 1

q2
, w1 = t1 − 2q3

2

q2(q3
2 + t1)

, w2 = −3
q8

2 + 2t1q5
2 + 10t21q

2
2

q9
2 + 6t1q6

2 − 5t31
,

u0 = 0, u1 = − 2

q2
2

− σ1(q1), u2 = −6
q4

2 − 2t1q2

(q3
2 + t1)2

− σ2(q1)

(33)

where once again we choose σn = −n(n+1)
q2

1
. When t1 = 0, these formulae reduce to the previous

case of “rational solutions”.
The first integral I1. Under the Darboux transformation the first integral satisfies the “usual”

KdV Darboux transformation

(∂2
2 + un+1,2(q2))(∂2 + wn(q2)) = (∂2 + wn(q2))(∂2

2 + un,2(q2)),

where ∂2 = E or ∂2 = F, depending upon the case and where un,2(q2) denotes the separated
q2-dependent part of the potential un(q1, q2).



A.P. Fordy / Journal of Geometry and Physics 56 (2006) 1709–1727 1719

Remark 4.1. With t1 = −12t, the Adler–Moser potential satisfies the KdV equation

Q(q2, t) = u2,2 = −6
q2(q3

2 + 24t)

(q3
2 − 12t)2

⇒ Qt = Qq2q2q2 + 6QQq2 .

The operator I1 = ∂2
2 +Q(q2, t) is the usual Lax operator, satisfying

I1t = [P, I1],

where

P = 4∂3
2 + 6Q∂2 + 3Qq2 ,

but we may also use the above L, which also satisfies Lt = [P,L].

5. Eigenfunctions of Darboux related operators

We have seen how to construct the eigenfunctions of the Laplace–Beltrami operatorLb through
the representation theory of the symmetry algebra (in this case sl(2,C)). Formula (22) shows that
a Darboux transformation carries forward these eigenfunctions, as well as building the potential
functions. For each m we start with ψm1 and build ψmi with the recursion relation (17) (or just
by acting upon ψm1 with F) to build the eigenfunctions of Lb. We then act on these with Di, i =
0, 1, . . ., to construct the eigenfunctions of L1, L2, . . ., defined by

ψmi,n = Dn−1 · · ·D0ψ
m
i with Lnψ

m
i,n = λm,nψmi,n, λm,n = 1

4
m(m+ 1)+

n−1∑
i=0

δi.

(34)

For each n, eigenspaces ofLn are invariant under the action of the first integral I(n)
1 . Depending

upon the example, I(n)
1 may act as a “ladder operator” or may act diagonally on the sequenceψmi,n.

We may consider this as a “ghost” of the action of part of the symmetry algebra of Lb, which
generally do not act invariantly on these eigenfunctions.

5.1. The case D = H + w

Since K = H, I(n)
1 is Darboux related to H2 through the isospectral relation (24). Since ψmi

satisfies

H2ψmi = µ2
i ψ

m
i ,

with µi = 2(m+ 1− i), the eigenfunctions ψmi,n satisfy

Lnψ
m
i,n = λm,nψmi,n and I

(n)
1 ψmi,n = µ2

i ψ
m
i,n.

The first two eigenfunctions of Lb are

ψm1 =
e2mq1

(sinh 2q2)m
, ψm2 = 2me2(m−1)q1

cosh 2q2

(sinh 2q2)m
. (35)

We consider two examples of Darboux transformation.
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The “Soliton” potentials. With wn = −(n+ 1) tanh q1, we obtain the “soliton” potentials
(27). Using the Darboux transformation D0, we find

ψm1,1 = e2mq1
(2m− tanh q1)

(sinh 2q2)m
, ψm2,1 = 2me2(m−1)q1

(2(m− 1)− tanh q1) cosh 2q2

(sinh 2q2)m
.

Now using the Darboux transformation D1, we find

ψm1,2 = e2mq1
(4m2 − 1− 6m tanh q1 + 3 tanh2 q1)

(sinh 2q2)m
,

ψm2,2 = 2me2(m−1)q1
(4(m− 1)2 − 1− 6(m− 1) tanh q1 + 3 tanh2 q1) cosh 2q2

(sinh 2q2)m
.

These eigenfunctions are being generated algebraically, with no control over analytic or asymp-
totic properties. However, the well known bound states of I(n)

1 , for each n, are included.

Whenm = 1
2 , the eigenfunction ψm1,1 is the bound state for I(1)

1 = ∂2
1 + 2sech2 q1, with eigen-

value µ2
1 = 1.

When m = 1
2 , the eigenfunction

ψm1,2 =
−3√

sinh 2q2
tanh q1 sech q1

is a bound state for I(2)
1 = ∂2

1 + 6 sech2q1, with eigenvalue µ2
1 = 1. When m = 1, the eigenfunc-

tion

ψm1,2 =
3

sinh 2q2
sech2 q1

is the second bound state for I(2)
1 , with eigenvalue µ2

1 = 4.
The “Rational” potentials. With wn = − (n+1)

q1
, we obtain the “rational” potentials (28). We

have the same eigenfunctions (35) of Lb, but now the form of Dn is different. D0 now generates

ψm1,1 =
(

2mq1 − 1

q1

)
e2mq1

1

(sinh 2q2)m
,

ψm2,1 = 2m

(
2(m− 1)q1 − 1

q1

)
e2(m−1)q1

cosh 2q2

(sinh 2q2)m
.

Now using the Darboux transformation D1, we find

ψm1,2 =
(

4m2q2
1 − 6mq1 + 3

q2
1

)
e2mq1

1

(sinh 2q2)m
,

ψm2,2 = 2m

(
4(m− 1)2q2

1 − 6(m− 1)q1 + 3

q2
1

)
e2(m−1)q1

cosh 2q2

(sinh 2q2)m
.

5.2. The case D = F + w

Since K = F,

I
(n)
1 D = DF2, with D = Dn−1 · · ·D0,
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so

F2ψmi = ψmi+2 ⇒ I
(n)
1 ψmi,n = ψmi+2,n, for each n.

The first three eigenfunctions of Lb are

ψm1 =
(q2

1 − q2
2)m

qm1
, ψm2 =

−2mq2(q2
1 − q2

2)m−1

qm1
,

ψm3 =
2m((2m− 1)q2

2 − q2
1)(q2

1 − q2
2)m−2

qm1
.

We consider two examples of Darboux transformation.
The “rational” potentials. With wn = − (n+1)

q2
, we obtain the “rational” potentials (32). The

commuting operator I(n)
1 takes the form

I
(n)
1 = ∂2

2 −
n(n+ 1)

q2
2

.

The Darboux transformation D0 generates

ψm1,1 = −
(2m− 1)q2

2 + q2
1

q2

(
(q2

1 − q2
2)m−1

qm1

)
,

ψm2,1 = 4m(m− 1)q2
2

(
(q2

1 − q2
2)m−2

qm1

)
. (36)

Now using the Darboux transformation D1, we find

ψm1,2 =
(2m− 1)(2m− 3)q4

2 + 2(2m− 3)q2
1q

2
2 + 3q4

1

q2
2

(
(q2

1 − q2
2)m−2

qm1

)
,

ψm2,2 = −8m(m− 1)(m− 2)q3
2

(
(q2

1 − q2
2)m−3

qm1

)
. (37)

For integer values of m, the representation of sl(2,C) is of dimension 2m+ 1. In the present
case, this is easily seen, since ψm1 is a polynomial of degree 2m in q2. Since F = ∂2, this just
reduces the degree by 1, so ψm2m+1 is of degree zero and thus in the kernel of F. For integer values
of m, the maximum number of nontrivial eigenfunctions ψmi,n is therefore 2m+ 1. However, it
can be seen in the above formulae that some members of the sequence can be rendered zero by
the Darboux transformation. In fact, since

D qN2 = (N − 2n+ 1), . . . , (N − 3)(N − 1)qN−n2 ,

we see thatDqN2 = 0, forN = 1, 3, . . . , 2n− 1 (odd values only). Sinceψm1 only contains terms of
even degree, ψm2k+1, k = 0, . . . , m, only contain terms of even degree, whilst ψm2k, k = 1, . . . , m,
only contain odd terms. More precisely, ψm2(m−k), k = 0, . . . , m− 1, contains odd degrees up to
2k + 1, so is first rendered zero by D when n = k + 1. Furthermore, if n < m, then ψm2(m−n)

is a linear combination of q2, q
3
2, . . . , q

2n+1
2 and only the highest term survives the Darboux

transformation, with

Dq2n+1
2 = 2nn!qn+1

2 .
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After D, I(n)
1 = ∂2

2 − n(n+1)
q2

2
, whose kernel is spanned by {qn+1

2 , q−n2 }, so I(n)
1 ψm2(m−n),n = 0. The

action of I(n)
1 on eigenfunctions is therefore

I
(n)
1 : ψm1,n→ ψm3,n→ · · · → ψm2m+1,n→ 0,

I
(n)
1 : ψm2,n→ ψm4,n→ · · · → ψm2(m−n),n→ 0, for n < m.

When n ≥ m, all the “even numbered” eigenfunctions are zero.
The Adler–Moser rational potentials. This is just a deformation (with parameter t1) of the

previous case. The general structure and formulae are the same, but the explicit formulae look
very different. The first Darboux transformation and potential function are just the same (since
w0 = − 1

q2
), so the eigenfunctionsψmi,1 are identical to those of (36). However, the second Darboux

transformation introduces the parameter t1, which deforms the eigenfunctions (37):

ψmi,2 =
(

(q2
1 − q2

2)m−i−1

qm1

)(
ψmi,2(0)+ t1ψmi,2(1)

q3
2 + t1

)
.

For instance, for i = 1, 2, we have

ψm1,2(0) = q2((2m− 1)(2m− 3)q4
2 + 2(2m− 3)q2

1q
2
2 + 3q4

1),

ψm1,2(1) = 2m ((2m− 1)q2
2 − q2

1), ψm2,2(0) = −8m(m− 1)(m− 2)q6
2,

ψm2,2(1) = −4m(m− 1)q2((2m− 1)q2
2 − 3q2

1).

When t1 = 0, these reduce to (37).

5.3. The case D = E + w

There is no need to study this case in detail, since it is related through the involution (13) to
the previous case, as already noted. Since

ψm1 =
(
q2

1 − q2
2

q1

)m
←→ ψm1 = q−m1

and since

E↔ F,

we obtain the same sequence of eigenfunctions for the Laplace–Beltrami operator (which is
invariant under the involution). Furthermore, the Darboux transformations have the same form,
so they produce the same collection of eigenfunctions for the Darboux related operators (but in
reverse order).

In the x–y coordinates, the formulae will be different.

6. Super-integrable cases

In two dimensions it is enough to have just one operator which commutes with L, in order to
proclaim complete integrability. For separable potentials the problem of calculating eigenfunc-
tions is reduced to analysing ordinary differential equations, but nothing explicit can be calculated
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without further assumptions. The special potentials considered in this paper were obtained through
Darboux transformations, which give us a tool for explicitly constructing eigenfunctions.

Another special class of potentials can be found, with the property of being separable in
two different coordinate systems. These are characterised by the existence of an additional,
independent operator, which commutes with L. The three operators will not, of course, be in
involution. The additional commuting operator may be just a Killing vector of Lb, in which case
the potential has a geometric symmetry. A more interesting case is when there exists an additional
second-order commuting operator.

If we require that two of our chosen operators I1 should commute with L, then the potential
function must satisfy two sets of integrability conditions. In this case, the two arbitrary functions
in our previous examples are fixed up to a finite number of parameters. In the x–y coordinates,
the resulting potential functions are rational.

Example 6.1 (The Killing tensors H2 and E2). Requiring both I1 = H2 + v1 and I2 = E2 + v2
to commute with L means that the potential function u(x, y) must satisfy both Eqs. (7) and (9).
The resulting operators are

L = Lb + c0

x
+ c1

y
+ c2

y − 1

x2 , I1 = E2 − 4

(
c1
x

y
+ c2

y

x

)
,

I2 = H2 − 16

(
c0

(
y − 1

x

)
+ c2

(
y − 1

x

)2
)
. (38)

This L can be gauged to the form

L = x2∂2
x + 2xy∂x∂y + (y2 − y)∂2

y + (bx+ e1)∂x + (by + e2)∂y,

which is one of the class of operators introduced by Krall and Sheffer [9] in the context of
orthogonal polynomials in two dimensions. It was shown in [5] that the operators I1 and I2 can
be used to build sequences of polynomial eigenfunctions for this gauged form of L.

Example 6.2 (The Killing tensors H2 and F2). Now the potential function u(x, y) must satisfy
Eqs. (7) and (11). The resulting operators are

L = Lb + c0
x

(y − 1)2 +
c1

y
+ c2

x2

(y − 1)3 ,

I1 = F2 − 4

(
c1

(y − 1)2

xy
+ c2

xy

(y − 1)2

)
,

I2 = H2 − 16

(
c0

(
x

y − 1

)
+ c2

(
x

y − 1

)2
)
. (39)

Example 6.3 (The Killing tensors E2 and F2). Now the potential function u(x, y) must satisfy
Eqs. (9) and (11). The resulting operators are

L = Lb + c1

y
, I1 = E2 − 4c1

x

y
, I2 = F2 − 4c1

(y − 1)2

xy
. (40)
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Remark 6.1. Under the involution (14), cases (38) and (39) interchange, with case (40) being
invariant. The operators exchange in the obvious way, reflecting the Lie algebra automorphism
E↔ F,H→−H.

Not all of the above super-integrable cases are Darboux related to Lb, but some are. This is
best seen in separation coordinates.

Example 6.4 (Case (38)). We write the operators (38) in the separation coordinates of (10):

L = 1

4
q2

1

(
∂2

1 − ∂2
2 + 4c0 + 4c1

q2
2

+ 4c2(q2
2 − q2

1)

)
, I1 = ∂2

2 − 4

(
c1

q2
2

+ c2q
2
2

)
,

I2 = 4(q1∂1 + q2∂2)2 − 16(c0(q2
2 − q2

1)+ c2(q2
2 − q2

1)2). (41)

This L can only be obtained from Lb through Darboux transformation if c0 = c2 = 0, in which
case L is also of type (40). This means that, as well as the operators (41) (with c0 = c2 = 0), this
L also commutes with

I3 = F2 − 4c1
(q2

2 − q2
1)2

q2
2

= (2q1q2∂1 + (q2
1 + q2

2)∂2)2 − 4c1
(q2

2 − q2
1)2

q2
2

.

Under the involution (13), L and I2 are invariant in this reduction, with I1 ↔ I3. Since I2 = H2

in this reduction, we may replace it by H. These three operators, for arbitrary c1, satisfy the
commutation relations of a polynomial extension of sl(2,C):

[H, I(c1)
1 ] = 4I(c1)

1 , [H, I(c1)
3 ] = −4I(c1)

3 ,

[I(c1)
1 , I

(c1)
3 ] = 2(8c1 − 1)H−H3 + 16HLc1 .

They also satisfy the relation:

I1I3 + I3I1 − 1

8
H4 + 4H2L− 32L2 + 1

2
(8c1 − 5)H2 + 16(4c1 + 1)L = 16c1(2c1 − 1).

For the values c1 = 1
4n(n+ 1), this sequence of operators is related to Lb through two se-

quences of Darboux transformations. Define

Ln = 1

4
q2

1

(
∂2

1 − ∂2
2 +

n(n+ 1)

q2
2

)
, L0 = Lb, DEn = ∂2 − n+ 1

q2
,

DFn = −2q1q2∂1 − (q2
1 + q2

2)∂2 − (n+ 1)
(q2

2 − q2
1)

q2
.

These satisfy the isospectral Darboux relations

Ln+1 DEn = DEn Ln, Ln+1 DFn = DFn Ln, I
(n+1)
1 DEn = DEn I(n)

1 ,

I
(n+1)
3 DFn = DFn I(n)

3 .

The Darboux operators satisfy the following commutation relations

[H,DEn ] = 2DEn , [H,DFn ] = 2DFn , [DEn ,DFn ] = H.
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Remark 6.2. Since u = −n(n+ 1)q−2
2 is a stationary solution of the higher KdV flows (starting

with the flow of order 2n+ 1), we can also build higher order operators which commute with
both Ln and I(n)

1 . For instance, when n = 1, the third-order operator

I4 = ∂3
2 −

3

q2
2

∂2 + 3

q3
2

has this property. This is Darboux related to E3 = ∂3
2 throughDE0 and satisfies the relation I2

4 = I3
1 .

Under the involution, I4 is related to an operator I5, related to F3 through DF0 , and this commutes

with both I(1)
3 and L1.

Example 6.5 (The quantum harmonic oscillator). Consider again case (41). Whilst this is not
Darboux related toLb for non-zero c0, c2, it can be so related to the quantum harmonic oscillator.
We can adjust the values of c0, c2 by scaling transformations, whilst c1 is derived from a Darboux
transformation. Consider the operator

Ln = 1

4
q2

1

(
∂2

1 − ∂2
2 + 2(1− n)+ q2

2 − q2
1 +

n(n+ 1)

q2
2

− n(n+ 1)

q2
1

)
,

the last term just being an additive constant, which adjusts the eigenvalue. With these specific
values of the parameters, we have commuting operators:

I
(n)
1 = ∂2

2 − 2(1− n)− q2
2 −

n(n+ 1)

q2
2

,

I
(n)
2 = 4(q1∂1 + q2∂2)2 − 8(1− n)(q2

2 − q2
1)+ 4(q2

2 − q2
1)2.

The operators Ln and I(n)
1 satisfy the following Darboux relations:

Ln+1 Dn = DnLn, I
(n+1)
1 Dn = DnI(n)

1 , with Dn = ∂2 − q2 − n+ 1

q2
.

When n = 0, the system (with zero eigenvalue) separates into a pair of quantum harmonic oscil-
lators:

(∂2
1 − q2

1)ϕ1 = µϕ1,

(∂2
2 − q2

2)ϕ2 = (µ+ 2)ϕ2

}
⇒ L0(ϕ1ϕ2) = 0. (42)

Using the standard ladder operators

A±i = ∂i ± qi satisfying [∂2
i − q2

i , A
±
i ] = ±2A±i ,

we have

(∂2
i − q2

i )ϕi = λϕi ⇒ (∂2
i − q2

i )(A
±
i ϕi) = (λ± 2)(A±i ϕi).

Starting with

ϕ1
i = e−(1/2)q2

i , satisfying A+i ϕ
1
i = 0 and (∂2

i − q2
i )ϕ

1
i = −ϕ1

i ,

we use A−i to build a sequence of eigenfunctions

ϕmi = (A−i )m−1ϕ1
i = (−1)m−1Hm−1(qi)e

−(1/2)q2
i ,

satisfying (∂2
i − q2

i )ϕ
m
i = (1− 2m)ϕmi ,
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where Hm(z) is the Hermite polynomial of degree m. We then use (42) to build the sequence of
eigenfunctions

ψm,0 = ϕm1 ϕm+1
2 = −Hm−1(q1)Hm(q2)e−(1/2)(q2

1+q2
2) satisfying L0ψm,0 = 0.

The eigenfunctions of Ln are then built through the Darboux transformation

ψm,n = Dn−1, . . . ,D0ψm,0 ⇒ Lnψm,n = 1

4
n(n+ 1)ψm,n.

The functions ψm,n are also eigenfunctions of I(n)
1 , since this is isospectrally related to I(0)

1 ,
which is itself one of the one-dimensional harmonic oscillators. On the other hand, the operators
I

(n)
2 are not related through the Darboux transformations, but do appear to act as I(n)

2 ψm,n =
ψm+2,n +

∑m
i=1 aiψi,n, and thus as ladder operators.

7. Conclusions

In this paper we considered the Laplace–Beltrami operator of a two-dimensional constant
curvature space, whose symmetry algebra is sl(2,C). This high degree of symmetry is lost when
potential functions are added and generally there would not exist any commuting operators. We
used Darboux transformations to build potential functions for which there do exist commuting
operators and, more importantly, whose spectrum and eigenfunctions can be explicitly calculated.

In this paper we only used first-order Darboux transformations, which automatically lead
to separable potentials. However, the existence of Darboux transformations is much stronger
than separability. The latter reduces a multi-dimensional Schrödinger equation to a collection
of one-dimensional ones, but these are not themselves guaranteed to be exactly solvable, but
are in the Darboux case. The Darboux transformation itself separates, with part of it lead-
ing to the Bäcklund chain for the KdV hierarchy. This meant that in the separated coordi-
nates the potential functions were built out of the well known special solutions of the KdV
hierarchy. We saw in the case of the Adler–Moser rational solutions (33), that the KdV equa-
tion is actually isospectral to our augmented Laplace–Beltrami operator. This phenomenon is
not, of course, restricted to this particular solution of the KdV equation. Any solution of the
KdV equation (or any equation in its hierarchy) can be used as a separated potential function.
Whilst these are only 1+ 1 dimensional equations, the spatial derivative can be taken in the
direction of any of our Killing vectors, with a constraint along the other separation coordinate
curve.

An interesting generalisation would be to use second or higher order Darboux transformations,
which should lead to non-separable potentials. A further generalisation is to consider non-trivial
electromagnetic terms (see, for example, [4,5]).

The approach is not restricted to two-dimensional spaces. The symmetry algebra of a higher
dimensional space would generally be more interesting and the weight spaces would no longer be
one-dimensional. Even first-order Darboux transformations could lead to non-separable potentials
in higher dimensions.
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